Меню Рубрики

Органическое питание для растений

Питание растений, минеральное питание растений — процесс добычи растениями неорганических соединений из почвенного раствора, воздушной или водной среды. В растительных организмах было обнаружено около 50 различных химических элементов, однако только 13 (азот, калий, кальций, магний, фосфор, сера, хлор, железо, медь, бор, цинк, марганец, молибден) считаются необходимыми для их жизни. Критерием признания элемента необходимым является возникновение нарушений в процессах жизнедеятельности в ситуации, когда исследуемый элемент удален из среды организма. Помимо 13 необходимых микроэлементов, в организме растения могут присутствовать также и такие, присутствие которых может положительно повлиять на его работу. Они называются полезными для растения микроэлементами [1] .

Элементы, присутствующие в количестве выше 0,1 % от сухой массы, называются макроэлементами. К ним относятся азот, калий, кальций, магний, фосфор и сера. Необходимые элементы, присутствующие в количествах меньше 0,1 % от сухой массы, называют микроэлементами. К этой группе относятся: хлор, железо, медь, бор, цинк, марганец, молибден, никель. К полезным химическим элементам относятся натрий, кремний, кобальт, алюминий и ванадий [1] . Эта классификация химических элементов не является однозначной, и могут возникать различия в определениях отдельных авторов: в микроэлементы, как правило, входят йод и кобальт [2] , а в макроэлементы — кремний [3] . Кроме элементов, поглощаемых из почвы в виде ионов, в растительных организмах встречаются в значительных количествах вода и углекислый газ, состоящие из углерода, водорода, кислорода [3] .

Знание о потребности растений в отдельных химических элементах используется в традиционном сельском хозяйстве, а также в практике гидропоники и аэропоники [3] . Чаще всего симптомы радикального дефицита тех или иных химических элементов наблюдаются у растений, произрастающих в посевах гидропоники, в ситуации, когда один из минеральных компонентов не подаётся. В случае с растениями, растущими в почве, хронический дефицит проявляется в виде слабых симптомов: как правило, замедление роста и пожелтение листьев [4] .

Многие растения могут поглощать минеральные соли, создавая для этого микоризу. Подсчитано, что микоризные растения составляют около 80 % видов, обитающих на суше. Доминирующим типом микоризы является арбускулярная микориза [5] . Грибы доставляют к корням растений как макроэлементы (главным образом соединения азота и фосфора), так и микроэлементы (например, цинк и медь) [1] . Мицелий может объединить несколько растений, создавая микоризную сеть, обеспечивающую общую доставку минеральных веществ многим растениям [6] .

Дефицит питательных веществ [ править | править код ]

Влияние дефицита питательных веществ может варьироваться от незначительного снижения темпов роста до очевидного его замедления, деформации, обесцвечивания и даже гибели растения. Визуальные симптомы, достаточно заметные, чтобы анализировать их при выявлении дефицита, встречаются редко. Большинство дефицитов многочисленны и умеренны. Однако, несмотря на то, что редко встречается дефицит только одного питательного вещества, азот, как правило, является наиболее дефицитным питательным веществом.

Все растения и деревья, как и любой живой организм, нуждается в питании. Питательные вещества, необходимые для роста, цветения и плодоношения, растения берут из почвы, воды и воздуха. Я регулярно провожу подкормку цветов дома, на участке использую удобрения для огорода. Без правильной и своевременной подкормки растения медленно растут, перестают цвести. Разобраться во множестве видов удобрений несложно, я расскажу об основных.

Виды удобрений

Главный критерий различия удобрений – деление их на органические и неорганические (минеральные).

Органические удобрения состоят из природных исходных материалов. Главный их плюс – мягкое действие на растение, недостаток – запах и оставление пятен. К этим подкормкам относят торф, компост, зеленые растения. Навоз как удобрение – лучшее питание для сельскохозяйственных культур. Он содержит все необходимые микроэлементы. Самый ценный навоз – конский. Навоз крупного рогатого скота используют как добавку к конскому. Удобрение почвы в районах с повышенной влажностью производят весной, в засушливых районах – осенью.

Минеральные удобрения – это искусственно созданные химические подкормки. Они легко и быстро усваиваются растениями, но обладают одним существенным минусом. При неправильно рассчитанной дозировке применение этих удобрений может привести к болезни и гибели растения.

По форме выпуска минеральные удобрения делятся на:

  1. Жидкие удобрения. Концентрированный раствор, который перед применением разводят водой. Самая распространенная форма удобрения для комнатных растений.
  2. Растворимые. Порошок, который разводят в воде непосредственно перед поливом.
  3. Гранулированные. Чаще используется как удобрение для сада.
  4. Удобрения в виде свечек или таблеток. Закладываются в почву, где постепенно растворяются по мере полива. Недостаток этого вида – неравномерность распределения полезных веществ.

По области применения подкормки разделяют на несколько видов:

  1. Универсальные удобрения содержат основные макроэлементы в примерно равных долях.
  2. Специальные удобрения созданы с учетом потребностей того или иного вида растений.
  3. Удобрение для деревьев подойдет всем плодовым культурам сада, а удобрения для роз необходимы для подкормки как садовых, так и комнатных роз.

Стандартные удобрения, в свою очередь, делятся на подкормку для цветущих и нецветущих растений. При выборе удобрения для газона остановитесь на подкормке для нецветущих растений.

По составу подкормки делятся на:

  1. Азотные удобрения. При нехватке азота растение замедляет рост, листья желтеют и опадают.
  2. Фосфорные удобрения. Фосфор играет основную роль в процессах фотосинтеза и оплодотворения, недостаток этого элемента пагубно сказывается на цветении и дальнейшей плодоносности растения.
  3. Калийные удобрения. Калий способствует удержанию влаги в побегах и стеблях. Кроме того, калийные подкормки увеличивают сопротивляемость растений к разного рода заболеваниям.

О том какие использовать удобрения для кахих растений я расскажу далее.

Полезные советы по подкормке растений

Какие удобрения и когда использовать, зависит от рода растения, которому необходима подкормка. Азотные удобрения для клубники логично использовать при появлении первых почек, фосфорные – после периода цветения. Применение удобрений при посадке семян напитает и защитит их.

Нехватка питательных веществ для растения так же опасна, как и переизбыток. Существует ряд правил, которые помогут провести подкормку с наибольшей эффективностью:

  1. Никогда не увеличивайте дозу или концентрацию удобрений самостоятельно. Следуйте инструкции на упаковке.
  2. Не удобряйте сухую почву. Такая подкормка приведет к ожогам и болезни растения.
  3. В период покоя, только что пересаженным растениям удобрения не нужны.
  4. Медленнорастущие растения нуждаются в более редкой подкормке, чем быстрорастущие.
  5. Цветущие растения удобряют с началом цветения.
  6. Если растение активно зимой, то подкормка необходима круглогодично.
Читайте также:  Сок черной редьки для волос

Удобрения, безусловно, помогают садоводу в выращивании крепких и здоровых растений. Но главное помнить, что прикормка «работает», только если и все остальные условия благоприятствуют развитию и росту растения. Сад Почвоутомление: профилактика и методы борьбы Подробнее

Эта статья поможет разобраться в многообразии питательных веществ, представленных на рынках.

Станьте нашим автором

Каждый человек — особенный, и опыт каждого — уникален. Расскажите о своем. Заработайте признание и благодарность наших читателей.

Для того чтобы разрешить вопрос, могут ли растения (высшие) использовать фосфор в органических соединениях И.Шулов взял для своих опытов наиболее распространенные виды растений и соединений в почвах (фитин, лецитин). Работа происходила в стерильных условиях, при этом было доказана возможность поглощать и усваивать растениями (кукурузой и горохом) фосфора фитина. При изучении возможности использования растениями (высшими) азотных органических соединений отличился Г.Петров, который работал тоже в стерильных условиях и доказал, что аспарагин, может поглощаться растениями (кукурузой) и при этом является отличным источником азотистого вида питания. При этом автор выдвинул предположение, о том, что в данном случае употреблялся амидный азот из аспарагиновой кислоты. Также было констатирована возможность употребления растениями (кукурузой) лейцина, азота тирозина и пентона. Позднее ученый доказал, что растения (кукуруза) способно поглощать не только азот аспарагина амидный, но и усваивать азот непосредственно из аспарагиновой кислоты.

Например, опыты, проводимые с кукурузой показали поступление и интенсивное перемещение из корней низко -, средне- и высокомолекулярных ароматических соединений гуминовых кислот. Также стоит сказать, что физиологическую активность имели различные по молекулярной массе и в особенности низкомолекулярные соединения гуминовых кислот. При поступлении в растение они способны усилить окислительно — восттановительные, а также ферментативные процессы, которые связаны с азотным и фосфорным обменом. С помощью гуминовых кислот грунта наблюдается высокий рост корневой системы и ее надземной части, также отмечалось повешение количества элементов питания – фосфора, азота, кальция и калия.

Исследования, проводимые на различных растениях, смогли показать, что при наличии в растворе низкоконцентрированных гуминовых кислот в растении наблюдается увеличение общего количества фосфора и азота. Также увеличивается вынос питательных веществ. Объяснить это можно тем, что под определенным воздействием гуминовых кислот ускоряется развитие, и рост надземной части и корневой системы и увеличивается общая способность к поглощению питательных веществ. Совместно с веществами с гумусовой кислоты, которые отличаются высокой активностью, в растение также могут поступать аминокислоты, витамины, металлы (поливалентные) и другие вещества, которые играют важную роль при развитии и росте.

Показанные данные проведенных исследований свидетельствуют о том, что растения способны применять для питания органические вещества, содержащиеся в почве. Данные соединения в основном играют роль структурного элемента, при этом данные элементы входят в состав самого растения. Различные опыты, направленные на изучение поступления этих веществ, проводились на множестве видов, которые относились к различным семействам. Оказалось , что растения способны усваивать не только вещества органической природы из почвы, но и микроорганизмов, выделения растений, которые содержатся в почве.

Так что высшие растения могут питаться органикой. Низшие зеленые растения, склонны к питанию только готовыми соединениями органической природы. Например, эвгленовые водоросли в составе своем имеют множество бесхлорофилльных форм, которые используются как органические вещества как источник углерода. Зеленые водоросли, в частности хлорелла способны очень хорошо развиваться в воде, которая богата растворимыми веществами органической природы. Под влиянием подобных веществ – аминокислот, сахаров и др. – водоросли могут снижать общую интенсивность фотосинтезирующих процессов, т.е. питание органикой заменяет им фотосинтез.

Также при исследовании было замечено, что корни у растения могут отлично поглощать сахар и аминокислоты. Очевидно, что данные вещества после их попадания в растение ничем не отличаются от подобных соединений, которые образуются при фотосинтезе. Обычно они расходуются на обменные процессы и на общее построение тела у растения. Однако растение могут еще поглощать и специфические виды соединений, к ним можно отнести пестициды и гербициды.

Было обнаружено проникновение антибиотиков, которые продуцируются микроорганизмами, различных алкалоидов из почвы, при этом эти вещества являются ядами или противоядами. Стоит упомянуть о поступлении ряда фенольных и других соединений органического происхождения в грунте из-за жизнедеятельности микроорганизмов и растений, являются они в большинстве своем замедлителями развития и роста. Общий механизм поглощения сложных веществ органической природы полностью еще не изучен. Существует теории подобного поглощения.

Способность воспринимать культурными растениями азота из мочевины, а также из кислоты мочевой была подтверждена исследованиями Томсона в данной области, который исходя из целей устранения питания у растений (ячменя, льна, гороха) продуктами распада различных азотистых веществ помещал растения каждый день в новый раствор (при этом было предварительно протестирован раствор, и устанвлено, что состав данного раствора, а в частности его продуктов может начинать распадать не ранее чем через 2 дня или 48 часов). Тажке были попытки вести растения непосредственно на органических субстратах в стерильных условиях, где будет полностью исключена возможность разложения и дальнейшей минерализации данных субстратов. В этом исследовании брали растворы, которые вводились в вещества органической природы: крахмал, сахара и др. Растения которые переносились в растворы упомянутых ранее веществ, росли и развивались нормальными темпами, а вот наблюдение за видами в дестилированной воде не прибавили в весе. Наиболее здоровым видом обладали растения, которые были помещены в раствор с гиминовыми веществами, а также крахмалом.

Растения же способны не только употреблять органические фрагменты, находящиеся в среде, но и выделять в почву подобные соединения. Интересным фактом является взаимный обмен органических соединений и неорганических. Данный обмен соединениями затрагивает экологическую и аллелопатическую роль органического питания. Довольно яркое представление о поступлении веществ, которые выделяются растениями, дали опыты которые проводились с участием меченого углерода.

Например, опыты, проводимые с полевыми растениями, смогли показать, что в составе корневых выделений растений являющихся донорами входят вещества органической природы с радиоактивной меткой этого углерода, который был усвоен при фотосинтезе. Далее данные вещества усваивались корневой системой соседних акцепторов (растений).

Сама передача осуществлялась быстро, и буквально через несколько дней были отмечено значительное увеличение количества углерода содержащего радиоактивную метку в растения -акцептора. Сама переда от культурных растений – люпина, посевного проса к сорнякам – пырею, ежовнику, проходила довольно неплохо, и также, наоборот, от сорных растений непосредственно к культурным проходило слабо (от овса к люпину) или же вовсе не проходила (от пырея к люпину). Наблюдался довольно быстрый обмен между сорняками различных видов (непахучая ромашка, пастушья сумка). Растения, принадлежащие к одному виду сорняков, обменивались тоже хорошо (непахучая ромашка и ежовник), другие случаи показали слабый обмен (пырей с пыреем). Если брать культурные растения, то неплохо происходил обменный процесс между вики и овсом. Стоит отметить, что чем ближе были расположены акцептор и донор, тем быстрее происходила передача выделений.

Читайте также:  Новогодние поделки в технике оригами

Довольно быстрое передвижение продуктов имеющих радиоактивную метку от доноров непосредственно к акцепторам может говорить о том, что вещества органической природы, входящие в состав выделений корнями, являются легкорастворимыми и подвижными веществами наподобие углерода, аминокислот, органических кислот. Из полученных данных можно говорить, о широком распространении обменного процесса органическими веществами происходящих между растениями, и о довольно большой скорости, а также о количестве веществ участвующих в данном процессе. Также установлено, что неорганические и органические продукты, а также вода может свободно перемещаться сквозь корни растений одного или же разных видов. Например, часто можно встретить срастание корней у древесных растений.

Обмен осуществляется не только при срастании их корней, но и через почвенный раствор. В этой теме будут любопытны исследования, сделанные И.Н. Рахтенко проведенные в лесных насаждениях в Белоруссии. Исследование проводилось над древесными породами в возрасте 1-20 лет, растущих на супесчаных, песчаных и суглинистых грунтах: липа, клен, дуб обыкновенный, береза бородавчатая и др. Растениям вводили радиоактивный фосфор через смачивание листьев, в отверстия, проделанные в стволе дерева или через корневые окончания. Спустя 2-3 дня после этого брали пробы с соседних растений, который располагались от 0,25 до 6 метров. Таким образом, было обработано 156 деревьев, в 474 случаях было обнаружено передвижение радиоактивной метки фосфора.

И.Н. Рахтенко, также говорит о том, что в схожих условиях исследования перемещение метки из липы в дуб было более интенсивным, нежели наоборот. Из клена в дуб фосфор перемещался быстрее, чем из дуба в клен или из одного клена в другой. Также выявлено, что при перемещении фосфора из одного растения в другое происходило при соприкосновении корней. При отсутствии контакта у древесных растений отсутствовал обменный процесс. Из исследований И.Н. Рахтенка можно сказать, что различия, которые были отмечены при передаче питательных элементов внутри одного вида и между разными видами могут быть осуществляться из-за разной ритмики поглотительной и выделительной деятельности. Здесь дело в том, что при вегетации растения имеют разные соотношения между этими процессами. У различных видов поглощение и выделение может не совпадать, у особей, принадлежащих к одному виду, они будут синхронными. Из-за у растений разных видов обменный процесс происходит гораздо интенсивнее, чем у одного вида растений.

В подобных изучениях перемещений меченого фосфора было отмечено и по общему направлению от древесных пород непосредственно к травянистым растениям (мятлику луговому, ползучему пырею) в случае, если их корни соприкасались. Передача происходила довольно быстро и через почвенный раствор без контакта корневых систем, они лишь находились на близком расстоянии. Перемещение фосфора было от одного травянистого растения непосредственно к другому, при этом как при прямом контакте корней, так и через почву. Некоторые ученые считают, что растения находясь в растительном сообществе, питаются из грунта как единое целое. Данное утверждение имеет под собой серьезную основу. Исходя из этого, можно говорить о том, что развитие, рост, продуктивность, а также общее качество урожая во многом зависят от находящихся рядом соседей.

Во-первых, исследования, проведенные в последних десятилетиях, показали нам, что растения высшего класса вместе с почвенными минеральным типом питания пользуются и соединениями органической природы. Гумусные кислоты, которые присутствуют в почве, увеличивают поступление в растение органических и минеральных веществ. Происходит это благодаря проницаемости мембран у клеток, именно благодаря этому происходит стимулирование развития и роста. Соединения органической природы, состоящие из низко- и высокомолекулярных частиц гумусных кислот, довольно хорошо могут поглощаться растениями, именно там происходит преобразование и уже вместе с поступающими из грунта углеводами и другими соединениями, особо не отличающиеся от соединений которые создаются при фотосинтезе, включаются во множество различных обменных процессов связанных с биосинтезом, направлены они в основном на развитие и рост растений. Также гумусные кислоты, в частности, состоящие из низкомолекулярных частиц, являются неплохими активными стимуляторами для роста растений.

Высшие растение способны поглощать не только органоминеральные и органические вещества из грунта, но и вещества органической природы образующие из выделений деятельности различных микроорганизмов, ризосферных и микоризных грибов, а также других растений, соединений из деятельности животных и человека. Данные продукты принимают участие в биосинтезе растения. Также эти продукты несут определенную информацию для иных растений, например о нападении врагов, насекомых вредителей, что уже доказано учеными. Немаловажное значение имеет выделение в грунт продуктов фотосинтеза и других соединений органических и минеральных. Обменный процесс для растений, принадлежащих к одному виду, может не отразиться на росте, для растений которые являются разными видами и растениями одного вида с сорняками может стимулировать процесс меньшего выделения обменных продуктов в грунт и большего их поглощения непосредственно из почвы. Торможение и ускорение роста при разном виде растений и сорняков может быть при наличии в обменных продуктах особых для каждого вида органических соединений коли – нов. Данное воздействие растений друг на друга будет называться аллелопатией. Это воздействие является основной причиной почвоутомления.

Однако, к сожалению, невзирая на большие достижения в изучении особенности питания органическими веществами растений, если брать практическую часть, то в России им не уделяется внимания. Подобными достижениями в основном пользуются в США, странах ЕС и Канаде и в некоторых других странах. В России же основным вниманием пользуется минеральное питание, превозносятся заслуги гидропоники и выращивания культур на средах синтетического происхождения, иногда можно услышать почести методу Миттлайдера. Если взять любую газету по садоводству, можно встретить только пользу от использования подкормок и удобрений растений с помощью минеральных удобрений. Хотя по многим опытам, уже известно, что качество продукции – биологическая и питательная ценность, срок хранения продукта – всегда другое по сравнению с продукцией, выращенной в естественной среде и без применения или очень малом применении минеральных удобрений и полном отсутствии различных гербицидов и пестицидов. Но несмотря на это продукция органического земледелия уже пользуется спросом в указанных ранее странах.

«>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector